Inside Advanced Scale Challenges|Wednesday, August 16, 2017
  • Subscribe to EnterpriseTech Weekly Updates: Subscribe by email

How Uber Uses Big Data to Optimize Customer Experience 

Aaron Schildkrout, head of data, at Uber

If you’ve ever used Uber, you’re aware of how ridiculously simple the process is. You press a button, a car shows up, you go for a ride, and you press another button to pay the driver. But there’s a lot more going on behind the scene, and much of that infrastructure increasingly runs on Hadoop and Spark, as the Uber data team recently shared.

Uber has the enviable position of sitting at the junction of the digital and physical worlds. It commands an army of more than 100,000 drivers who are tasked with moving people and their stuff within a city or a town. That’s a relatively simple problem. But as Uber’s Head of Data Aaron Schildkrout recently said, that simplicity of its business plan gives Uber a huge opportunity to use data to essentially perfect its processes.

“It’s fundamentally a data problem,” Schildkrout says in a recording of a talk that Uber did with Databricks recently. “Because it is so simple, we sort of get to the essence of what it means to automate an experience like this. In a sense we’re trying to bring intelligence, in an automated and basically real time way, to cars that all over the globe right now that are carrying people around, to make that happen at this tremendous scale.”

Whether it’s calculating Uber’s “surge pricing,” helping drivers to avoid accidents, or finding the optimal positioning of cars to maximize profits, data is central to what Uber does. “All these data problems … are really crystalized on this one math with people all over the world trying to get where they want to go,” he says. “That’s made data extremely exciting here, it’s made engaging with Spark extremely exciting.”

Read the rest of the article at Datanami.

About the author: Alex Woodie

Alex Woodie has written about IT as a technology journalist for more than a decade. He brings extensive experience from the IBM midrange marketplace, including topics such as servers, ERP applications, programming, databases, security, high availability, storage, business intelligence, cloud, and mobile enablement. He resides in the San Diego area.

Add a Comment

Share This